Revealing extraordinary tensile plasticity in layered Ti-Al metal composite
نویسندگان
چکیده
Layered Ti-Al metal composite (LMC) fabricated by hot-pressing and hot-rolling process displays higher ductility than that of both components. In this paper, a combination of digital image correlation (DIC) and X-ray tomography revealed that strain delocalization and constrained crack distribution are the origin of extraordinary tensile ductility. Strain delocalization was derived from the transfer of strain partitioning between Ti and Al layer, which relieved effectively the strain localization of LMC. Furthermore, the extensive cracks of LMC were restricted in the interface due to constraint effect. Layered architecture constrained the distribution of cracks and significantly relieved the strain localization. Meanwhile, the transfer of strain partitioning and constrained crack distribution were believed to inhibit the strain localization of Ti and change the deformation mechanisms of Ti. Our finding enriches current understanding about simultaneously improving the strength and ductility by structural design.
منابع مشابه
DAMAGE EVOLUTION IN Ti-SiC UNIDIRECTIONAL FIBER COMPOSITES, J.C. Hanan, G.A. Swift, E. Ustundag, I.J. Beyerlein, B. Clausen, J. Almer, U. Lienert, D.R. Haeffner, pp. 251-256
Fiber fractures in metal-matrix composites often initiate damage zones that grow until the composite fails. To better understand the evolution of such damage from a micromechanics point of view, a model Ti-matrix/SiC-fiber composite was studied for the first time. Using high energy X-rays and a small sampling volume, the damage zone around a broken fiber was investigated. The growth of this zon...
متن کاملStudy on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System
Mechanical property and impact resistance mechanism of bionic layered composite was investigated. Due to light weight and high strength property, white clam shell was chosen as bionic model for design of bionic layered composite. The intercoupling model between hard layer and soft layer was identical to the layered microstructure and hardness tendency of the white clam shell, which connected th...
متن کاملMicrostructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys
Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints...
متن کاملThe Effect of Heat Treatment on the Microstructure and Mechanical Properties of Al/Al3Zr + Al3Ti In-situ Hybrid Composite Fabricated by Friction Stir Processing
In this research, an in-situ hybrid composite reinforced by Al3Zr and Al3Ti aluminide particles was fabricated by friction stir processing (FSP). The base metal was in the form of a rolled Al 3003-H14 alloy sheet, and zirconium and titanium metal powders were used as the reinforcements. Six passes of FSP were applied. Tensile strength and hardness of the base metal, as well as FSPed samples bef...
متن کاملMechanical and Tribological Behavior of Aluminum Alloy LM13 Reinforced with Titanium Dioxide Metal Matrix Composites
In the present research work physical, mechanical and tribological behavior of Aluminum (Al) alloy LM13 reinforced with Nano-sized Titanium Dioxide (TiO2) particulates were fabricated, mechanical and tribological properties were investigated. The amount of nano TiO2 particulates in the composite was added from 0.5% to 2% in 0.5 weight percent (wt %) increments. The Al-LM13-TiO2 Metal Matrix Com...
متن کامل